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Abstract

We developed an adaptive training algorithm, whereby an in vitro neocortical network learned
to modulate its dynamics and achieve pre-determined activity states within tens of minutes
through the application of patterned training stimuli using a multi-electrode array. A priori
knowledge of functional connectivity was not necessary. Instead, effective training sequences
were continuously discovered and refined based on real-time feedback of performance. The
short-term neural dynamics in response to training became engraved in the network, requiring
progressively fewer training stimuli to achieve successful behavior in a movement task. After
2 h of training, plasticity remained significantly greater than the baseline for 80 min (p-value
<0.01). Interestingly, a given sequence of effective training stimuli did not induce significant

plasticity (p-value = 0.82) or desired behavior, when replayed to the network and no longer
contingent on feedback. Our results encourage an in vivo investigation of how targeted
multi-site artificial stimulation of the brain, contingent on the activity of the body or even of
the brain itself could treat neurological disorders by gradually shaping functional connectivity.

Introduction

A life’s experiences spur the brain to continuously rewire
itself to best achieve behavioral goals. However, errors can
occur when injury or a pathological condition causes aberrant
neuronal activity, and often a disconnection arises between the
activity of the brain and that of the body. Treating movement
disorders using physical therapy has been shown to modify
neuronal activity, and in different studies, neuronal activity
has been shown to be modified by electrically stimulating
neuronal tissue (see below). Thus theoretically, electrically
induced neuronal plasticity could allow the brain to be
rewired to achieve a more desired behavioral state. Here, we
investigated how a neocortical network could learn to modulate
its dynamics and achieve user-defined activity states through
feedback training with electrical stimuli. Besides highlighting
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potential therapeutic roles for artificial stimulation of the
brain, these experiments give insight into how the processes
underlying learning and memory are expressed in and induced
by network activity.

Electrical stimulation has been extensively used to
artificially induce neuronal plasticity and to study learning and
memory. For example, cellular plasticity has been observed
in a variety of functions, including in synaptic efficacy (Bliss
and Lgmo 1973, Bi and Poo 2001, Markram et al 1997),
intrinsic neuronal excitability (Daoudal and Debanne 2003,
Zhang and Linden 2003), neuronal morphology (Uesaka et al
2007) and glial morphology (Fields 2005, Ishibashi et al
2006), action potential propagation (Bakkum et al 2008),
and neurogenesis (Kempermann 2002). A much-needed
progression in the field is to determine how cellular plasticity
scales and integrates to influence neuronal network dynamics.
In primate motor cortex, a neuron was repetitively stimulated

310


http://dx.doi.org/10.1088/1741-2560/5/3/004
mailto:steve.potter@bme.gatech.edu
http://stacks.iop.org/JNE/5/310

Closed-loop training in cortical networks

5 ms after recording the occurrence of an action potential in
a different neuron using an electronic implant (Jackson et al
2006); after halting the stimulation, neural activity in pathways
previously activated by the stimulated neuron was now also
activated by the recorded neuron. Similar ‘pathway-specific’
plasticity (Jimbo et al 1999) and also a ‘region-specific’
variation in the flow of neuronal activity (Chao et al 2007) have
been induced in in vitro networks. Thus electrical stimulation
can sculpt the flow of neuronal information through a variety
of mechanisms.

We hypothesize that spatio-temporally distributed
electrical training stimuli contingent on neuronal or motor
output could provide effective therapy for neurological
disorders by either retraining or bypassing malfunctioning
neuronal circuits. Many steps are required to reach this
ambition, including quantifying the ability and limitations
of electrical stimulation to induce functional or adaptive
changes in neuronal activity. Here, using an extracellular
multi-electrode array (MEA) to record and stimulate neural
activity of neocortical networks in vitro, we refined a closed-
loop adaptive training algorithm. An artificial embodiment,
or animat (Meyer and Wilson 1991, De Marse et al 2001)
controlled by the distributed activity of a cultured network,
was trained to move in different user-defined directions by
shaping the functional connectivity of the network. With
our design to adaptively deliver training stimuli as a function
of behavior, a priori knowledge of functional connectivity
was not necessary. Instead, effective patterned training
stimuli (PTS) were continuously selected by the hybrid
(neural + computer) system, based on the embodiment’s
real-time performance. The short-term neural dynamics in
response to successful training stimuli became engraved in
the network, requiring progressively fewer training stimuli
applications to achieve correct behavior. Interestingly, a given
training sequence did not induce plasticity, let alone desired
motor output, when it was replayed to the network and no
longer contingent on performance. These findings with living
networks validate in vitro our previous electrical training
results demonstrated in silico using a simulated network of
1000 integrate-and-fire neurons (Chao et al 2008). Results
from our in vitro model encourage an in vivo investigation of
how targeted electrical stimulation of the brain, contingent on
the activity of the body or the brain itself, could treat aberrant
neuronal activity.

Methods

Cell culture

We have developed techniques to maintain neuronal cultures
with a bi-directional computer interface for many months.
Briefly, cells from E18 rat cortices were dissociated and
cultured at high density in DMEM containing 10% horse
serum, sodium pyruvate, insulin and GlutaMax (Potter and
DeMarse 2001, Wagenaar et al 2006b) on 59-electrode MEAs
(30 um diameter titanium nitride, arranged in a square grid
with 200 um spacing; Multichannel Systems), and allowed
to grow between 3 and 5 weeks prior to experimentation.

No activity-based selection criteria were used to choose
cultures for these experiments. Data acquisition (using
MEAG60 and MCCard, Multichannel Systems), visualization,
artifact suppression and spike detection were controlled using
Meabench (Potter et al 2006). Stimuli were delivered with
custom all-electrode stimulator circuits (Wagenaar and Potter
2004). Experiments lasting many hours were conducted
using sealed-lid MEAs (US patent no. 6, 521, 451) inside an
environmentally controlled incubator, allowing us to maintain
very stable environmental conditions (Potter and DeMarse
2001).

Closed-loop electrical training system

Closed-loop algorithms for embodied cultured networks
comprise a feedback cycle from neuronal activity, to behavior
of the embodiment, to assessment of performance by a
computer, to electrical stimulation, to neural processing and
back to recording of neural activity (Chao et al 2008). The
animat in this work consisted of a simulated animal that could
move in a two-dimensional plane, as controlled by the activity
of the cultured network (see Motor Mapping, below). The goal
was for the animat to learn to move in a pre-chosen direction,
which was changed four times per experiment. The closed-
loop system in the present work included (1) three different
stimulation protocols for probing, directing and maintaining
the network dynamics, (2) a motor mapping derived from
a population coding that incorporated spatial information of
network activity, and (3) a training algorithm that adaptively
selected effective training stimuli (figure 1).

Three classes of stimulation protocols

We used three types of electrical stimulation for three different
purposes, detailed below.

e CPS. A constant context-control probing sequence was
used to sample the network dynamics, to generate a
command for the animat’s next motor output.

e PTS. Patterned training stimuli were used to induce
network plasticity when the performance was inadequate.

e SBS. Shuffled background stimulation was used to
stabilize accumulated plasticity.

Biphasic voltage-controlled rectangular pulses were used
for all stimuli (positive phase first, £300 mV, 400 1s per phase)
(Wagenaar et al 2004). To map which electrodes were active
(able to record and/or evoke action potentials) for each culture
before an experiment, pulses were delivered in random order to
the 59 usable electrodes (the 60th electrode is a large reference
electrode) on the MEA for 30 min, one at a time, with random
inter-stimulus intervals between 200 and 400 ms. The activity
was always recorded from all the remaining electrodes.

Our stimulation system (Wagenaar et al 2004) allows real-
time creation and delivery of arbitrary sequences of stimuli
on any of the recording electrodes. By using the SALPA
algorithm to subtract stimulation artifacts (Wagenaar et al
2002), action potentials beginning 2 ms after a stimulus could
be detected. Stimulation voltages of 300 mV were lower than
those in our previous investigations of plasticity magnitude
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Figure 1. Schematic of the closed-loop feedback, adaptive training and experiment protocol: see Methods for details. (a) @ A single probe
electrode was repetitively stimulated every 6 s. After each stimulus, 100 ms of evoked responses were recorded to form the 2D center of
activity (CA) vector. @ The CA was transformed (T into incremental movement [dX, dY). @ If the movement was within & 30° of the
user-defined desired direction, a shuffled background stimulation (SBS) was delivered. Otherwise, a patterned training stimulation (PTS)
was repetitively delivered. @ Context-control probing sequences (CPS) were delivered after SBS or PTS, and ended with probe pulses. (b)
One feedback cycle was 6 s long and consisted of a CPS preceded by either SBS or PTS. The 8 x 8 grids represent the electrode locations of
an MEA; an example is given of how stimulation electrodes (arrows) of a given PTS were shuffled to create an SBS. (c) For unsuccessful
movement, a PTS (PTSy) was selected from a pool of 100 possibilities. The probability of each PTS (P, (#)) being chosen later (P (¢t + 1))
increased (blue) or decreased (red) depending on the success of the motor output. See equations (3) and (4). (d) An experiment lasted 21 h.
It consisted of four 2 h training periods (closed-loop or open-loop) each with a different desired direction. SBS-only periods were added as a
control before, between, and after training periods.
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(Chao er al 2007) in order to better localize which neurons
were activated (Chao et al 2008, Wagenaar et al 2004).

Context-control probing sequence (CPS). A CPS consisted of
a sequence of 6 ‘context-control’ stimulation pulses, followed
by one ‘probe’ pulse, with inter-pulse intervals randomly
chosen between 200 and 400 ms, and were 1.8 s long on
average. Context refers to the state of neural activity when the
probe is applied. The purpose of the context-control pulses
was to quiet any ongoing bursting activity in the network
(Wagenaar et al 2005), so that the response to the probe
pulse was more reproducible. The 200400 ms range was
found to be the most effective at reducing variability in probe
responses (Chao et al 2008). The six context electrodes
were randomly selected from the set of active electrodes
that evoked responses occurring mostly within 20 ms of the
stimulation. Their short-latency responses were chosen so as
not to overlap the response to the probe. The probe electrode,
by contrast, was chosen from the set of active electrodes with
clear, longer-latency polysynaptic responses, which ended
within 100 ms in our experiments. A probe electrode that
evokes polysynaptic activity at multiple electrodes is capable
of revealing changes in network-level functional connectivity.
Once the spatial (electrode locations) and temporal (inter-pulse
intervals) structure of the 7-pulse CPS (ending with the probe
pulse) was devised for a given experiment, it was fixed and
used throughout the experiment to sample the network state
once every 6 s (one feedback cycle, see figure 1(b)).

Action potentials evoked by the probe were recorded
for the next 100 ms on all MEA electrodes.  Probe
responses served as a readout of the network’s current
functional connectivity and were used to determine the next
motor output (see the ‘Motor mapping’ section below).
Because of the constancy of the CPS, any changes in probe
responses during an experiment were due mainly to changes
in network functional connectivity. Therefore, changes in
probe responses, or the consequential motor outputs, directly
reflected learning in the hybrid system.

Patterned training stimulation (PTS). A PTS consisted
of the repetitive delivery for ~4.2 s (6 s feedback cycle
minus ~1.8 s CPS, giving on average ~12 repetitions per
cycle) of a cluster of six stimulus pulses with an inter-
cluster interval randomly chosen between 200 and 400 ms
each time. For one cluster, the inter-pulse interval between
two consecutive pulses was fixed at 10 ms, giving a cluster
duration of 50 ms. We compiled a pool of 100 different
PTSs, each characterized by its unique spatio-temporal
sequence of six stimulation electrodes in a cluster; the
electrode order was fixed for the repeated clusters in a given
PTS. The six electrodes used in each PTS were randomly
chosen from among the set of electrodes capable of evoking
action potentials (repeated electrodes allowed; CPS electrodes
excluded).

Paired stimulation of monosynaptically connected
neurons evokes spike-timing-dependent plasticity (STDP),
with greatest magnitude at intervals of 0-30 ms (Markram
et al 1997, Bi and Poo 2001). At the network level,

neurons at different electrodes can be connected through
multiple neurons and pathways. Therefore, because PTSs
with different electrode sequences can repetitively evoke
different activation pathways with a variety of axonal and
synaptic delays, we expected that they would alter the network
functional connectivity toward different states, through a
complex mixture of potentiation and depression from STDP
mechanisms (Jimbo et al 1999).

Shuffled background stimulation (SBS). Similar to PTS,
an SBS consisted of the repetitive delivery of clusters of
six stimuli with an inter-cluster interval randomly chosen
between 200 and 400 ms each time, and with the inter-
pulse interval of 10 ms within each cluster. When SBS
was required, one of the 100 PTS clusters was randomly
selected and delivered, but unlike PTS, where the sequence
of six stimulation electrodes in each cluster was the same for
all repetitions during one feedback cycle, the temporal order
of the six stimulation electrodes was randomized for each
cluster. The randomization maintained comparable overall
stimulation rates and electrode distribution as the PTS, while
removing the repeating spatio-temporal pattern of neuronal
activation. We hypothesized that SBS, unlike PTS, would
have an unbiased randomizing effect on changes in network
functional connectivity (Chao et al 2005).

Motor mapping

Sequences of action potentials in probe responses were
transformed into movements of the animat using a customized
motor mapping. Population coding based on mean firing
rates across a population of neurons is a candidate motor
mapping found to occur in the motor cortex (Georgopoulos
1994), premotor cortex (Caminiti et al 1990), hippocampus
(Wilson and McNaughton 1993) and other cortical areas: the
firing rates of a group of broadly tuned neurons taken together
provide an accurately tuned representation (e.g., to a preferred
direction of arm movement). We used a related population
coding, termed the center of activity (CA), which explicitly
includes neuron (or recording electrode) location as a relevant
variable (Chao et al 2005). Probe responses were mapped into
incremental movement in the X-Y plane [dX, dY]:

[dX,dY] =T % CA, €))
where
2\ Fi - [Xe — Rx, Yo — Ry]

59
=1 Fr

CA =[CAy, CAy] =

@

Analogous to the center of mass, the center of activity (CA)
is the vector summation of the number of action potentials
recorded on each electrode k (i.e., the firing rate F}) weighted
by the spatial location of the electrode: [Xj, Y;] are the
coordinates of electrode k relative to the reference point [Ry,
Ry], which we set as the center of the MEA (figure 1(a) @).
The inclusion of spatial information was found more
reliable for quantifying network functional plasticity than
using firing rates alone (Chao er al 2007). The CA
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was normalized by a transformation matrix, f", to remove
any directional bias arising from different distributions of
neurons in different MEA preparations (figure 1(a) @): the
transformation centered the distribution of CAs to [0, 0]
to allow movement in all possible directions with equal
magnitudes (offsets and scalings, respectively, in X and Y
dimensions). The transformation matrix was fixed throughout
any given 2 h closed-loop or open-loop trial (see below) and
recalculated for each different trial.

Training algorithm

We designed an adaptive training algorithm in order to
direct neuronal plasticity and gradually improve the animat’s
performance at moving in a pre-specified direction.

When movement was successful (defined to be within =+
30° of the desired direction), no changes in network functional
connectivity were desired. In this case, SBS, which contains
no consistent structure of electrode stimulation order, was
delivered until the beginning of the next CPS (figure 1(a),
® and @; detailed in figure 1(b)).

When movement was not successful, plasticity of probe
responses was desired. In this case, a PTS randomly selected
by the computer from the pool of 100 PTSs was applied in
order to train the network. However, some PTSs may give
desired neuronal plasticity while others may give the opposite
or none. Therefore, we designed an adaptive algorithm that
increased the likelihood of effective PTSs being selected,
while decreasing the influence of maladaptive PTSs. Initially,
each PTS had an equal probability of being chosen. If
the current PTS (PTSy) improved the performance, then the
probability of PTSy (Pi(#)) being chosen later (Pi(¢ + 1))
increased, and the probability of other PTSs (P;(¢ + 1)) being
chosen decreased (figure 1(c)):

1.5 Pu(1)
P(t+1) = —————, k = current PTS
1405 Pu(2) -
Pi(t +1) Pi(t) fori # k
; =—"—| ri )
1+05-Pe(t)

Otherwise, if PTS; worsened the performance, then Pi(t + 1)
decreased from P(f), and P;(t + 1) for other PTSs increased:

0.5- Pu()
P(t+1) = ——m, k = current PTS
105 P(t) @
Pi(t+1) i) fori #k
; = i .
105 P(t)

With real-time adaptive selection of plasticity inducing stimuli,
the dynamics of neuronal activity could be shaped toward the
desired state. A maximum probability of 0.50 was set so thatno
one PTS was dominant. A minimum of 0.002 was set to ensure
each PTS remained available in the future. This allowed the
flexibility to adapt to ongoing changes in neuronal network
dynamics. The lowered stimulation voltages (£300 mV)
and the 6 s feedback cycle time were intended to induce
plasticity incrementally to reach a desired performance while
minimizing maladaptive plasticity.
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Experimental design

SBS-only stimulation

At the beginning of an experiment and prior to each closed-
loop training, CPS with probe stimuli were delivered, with
only SBS (no PTS) in each feedback cycle for 6 h (figure 1(d)).
This allowed 2 h for the network to habituate to the presence
of electrical stimulation and another 4 h for measuring the
baseline plasticity, which we call ‘drift’ (see figure 6(a), black
triangles).

Closed-loop experiments with different desired
movement directions

One closed-loop experiment consisted of four 2 h training
periods, each with a different desired direction, and 2 h SBS-
only periods (with CPS) in between (figure 1(d)). After a
training period, the stability of plasticity was measured during
the 2 h SBS-only period. The transformation matrix for each
training period, 7', was calculated based on probe responses
during the last 30 min in the preceding SBS-only period.
Six closed-loop experiments were performed on five different
cultures from three dissociations such that 23 training periods
were analyzed (6 x 4 minus 1, where a technical error caused
a loss of data). Two of the experiments were performed on
one culture, with 13 days in between and different CPS and
PTS:s.

Open-loop stimulation experiments

To test if the improvement in performance was an artifact
of the electronics or electrode chemistry arising from a
particular stimulation sequence, the entire exact sequence
of stimuli recorded from each closed-loop experiment was
replayed to the same network about a day later. Since
the previously used transformations might not successfully
center the initial distribution of CAs if activity changed,
the transformation matrices were recalculated as before.
However, the particular transformation used does not affect
the calculations of plasticity of motor output (figure 5) or
of neuronal activity (figure 6). Moreover, transformation
matrices between closed-loop and open-loop trials were found
to not be significantly different (p-value = 0.34 Wilcoxon
sign rank test, n = 23 trials % 2 offset dimensions; scaling
transformations do not affect the movement direction).

Results

Training contingent on motor output shifted neuronal
activity towards the desired activity

We designed a closed-loop algorithm to use distributed
electrical stimulation to train cultured networks to learn user-
defined motor outputs: moving an animat in a pre-defined
direction. The closed-loop training algorithm was tested in
five cortical networks grown over MEAs. Array-wide action
potentials evoked by repeating probe stimuli, delivered to a
single fixed electrode, commanded motor output every 6 s.
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Figure 2. Neuronal response to closed-loop and open-loop training. (a) Closed-loop training: animat movement trajectory (left column) and
the change in the probability distribution of movement directions (right column) demonstrated the motor output adapted to the desired
direction (black arcs). The desired directions of —135°, —45°, 135°, and 45° were set as goals in random order for 2 h periods (light to dark
blue in time) interspersed by 2 h SBS-only periods (see Methods). A successful motor output was considered to be movement within +30°
of the desired direction. The smaller trajectory circle is a zoom-in of the beginning of the experiment and the 30 min SBS-only period (gray)
is used to calculate the transformation, 7. The probability distribution of movement directions during 10 min at the start of experiments was
subtracted from that during the final 10 min, thus allowing negative values (red). (b) Open-loop training: the closed-loop stimulation
sequence was recorded and replayed to the same network a day later. Movement trajectories (scaled to match the corresponding closed-loop
experiment) changed but not necessarily toward the desired direction. The distribution of movement directions also changed but in a more
distributed manner. Learning curves of (c) closed-loop and (d) open-loop examples shown in (a) and (b): a learning curve was defined as the

probability of movement in the desired direction within a 10 min moving time window (time step = 1 min). The probability of the
successful motor output increased in time when training was contingent on the motor output. A random movement would give a 16.67%
chance (horizontal line) of movement within = 30° of the desired direction (60°/360°).

Spatio-temporally patterned electrical stimuli were delivered
either repetitively (PTS) to induce directed plasticity, or
randomly (SBS) to preserve current functional connectivity.
The probability of selecting a specific PTS as a training
signal, from a pool of 100 PTSs, was updated based on how
its application influenced the network’s short-term activity
dynamics during the following motor output (see Methods and
figure 1(c)). Four goals were applied sequentially to a network,
that is, the desired movement direction was changed by £90°
or 180° three times (see figure 2). Overall success was judged
by the ability of the network to crystallize successful short-

term changes into long-term adaptive plasticity and also by its
ability to further adapt to new desired motor outputs. With
training, the animat was able to head toward the pre-defined
desired directions (one representative experiment is shown in
figure 2(a)). The learning curves show that a greater proportion
of movements were in the desired direction as training
progressed (figure 2(c)). Since a correct movement meant
applying SBS instead of PTS, fewer training stimuli were
needed in time, suggesting the network learned by small
increments the appropriate input/output function to produce
successful animat behavior.
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Figure 3. Learning curves for all closed-loop experiments: for each experiment, the learning curves (as in figure 2(c) and (d)) and the time
courses of different PTS probabilities are shown. Various series of PTS were needed to induce appropriate neuronal plasticity and successful
motor output. For clarity, the PTSs with lower probability were not plotted. Electrode locations and order (right) for the most frequent PTS
indicated by red arrows are shown in 8 x 8 grids of electrode locations. In five out of 23 trials (21.7%), the learning curves were below the
16.67% chance in the last 10 min of training (black arrows).

Learning curves for all experiments are shown in figure 3
and averaged in figure 4. The average normalized learning
curve of all closed-loop experiments showed the success rate
increased by a factor of 2.88 + 0.08 (mean = SEM; n =
23 trials, from six experiments) times after 2 h of training.
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In five out of 23 trials (21.7%), the learning curves were
below the 16.67% chance level (60° /360° chance of movement
within +30° of the desired direction) in the last 10 min of
training (black arrows in figure 3). This suggests that a more
optimal training algorithm could be created. For example,
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Figure 4. Average normalized learning curves of all closed-loop
and open-loop experiments: to compare trends among different
experiments, each learning curve was normalized by dividing the
probability of a successful motor output when training began. The
average normalized learning curve in the last 10 min of the closed
loop experiments was 2.88 4 0.08 (mean & SEM) times higher than
that at the start, which was significantly higher than 1.24 £ 0.03 for
the open-loop experiments (p-value < 1 x 1076, n = 23 trials from
six experiments, Wilcoxon signed rank test). An exponential curve
fit gives a time constant of 10.6 min and a learning curve asymptote
of 3.13 (SSE = 2.95, R-square = 0.7814).

the randomly chosen set of 100 PTSs (from the billions
possible) might not be diverse enough to produce plasticity
in all directions. Moreover, an appropriate PTS may become
inappropriate at a later time, and the 0.50 maximum criterion
on the probability of selecting a PTS allows randomly applied
inappropriate PTS to produce setbacks, which may contribute
to the fluctuations in the learning curves.

The entire stimulation sequence delivered during a closed-
loop experiment was recorded and replayed to the same
network the next day as a control open-loop experiment.
Unsuccessful behavior during the open-loop experiments
would rule out the occurrence of artifactual changes in
network responses arising from non-biological causes, such as
electrochemistry or electronic noise, and ensure that neuronal
plasticity was responsible for the observed learning during the
closed-loop experiments. Replayed stimuli were no longer
contingent on the performance of the animat, and consequently
its movement failed to show directed, progressive change
toward the desired directions (figures 2(b), (d), and 4). The
average normalized learning curve of open-loop experiments
was significantly lower than in closed-loop experiments
(p-value < 1 x 10°, n = 23 trials, Wilcoxon signed rank
test) (figure 4). Changes in the movement direction were
distributed across a wider range of angles than with closed-
loop training (compare figures 2(b) and (a)). Therefore,
successful learning reflected adaptive biological plasticity in
the neuronal networks, and required closed-loop training in
which stimuli were contingent on behavior.

Changes in motor output arose from neuronal plasticity,
not an elastic dependence on stimulation history

The improved performance induced by closed-loop training
could be due to enduring plastic changes in the neuronal
network or, alternatively, due to a more transient elastic
dependence on the recent stimulation history. An elastic
change in responsiveness to stimuli was observed by Eytan
et al in dissociated cortical cultures, where the sensitivity of
neurons selectively adapted to stimulation at different very
low frequencies, and this change in the sensitivity faded away
within 15 min after stimulation was removed (Eytan et al
2003, Wagenaar et al 2006a). In order to characterize the
durability of plasticity here, after 2 h of closed-loop training,
we switched back to the SBS-only stimulation and quantified
whether the learned movement was maintained, and if so, for
how long.

By sampling the distribution of movement angles in
10 min time bins from 1 h before to 2 h after the closed-
loop experiment, we found that (1) the movement angle
gradually converged to the desired directions during closed-
loop training, and (2) the learned directions were maintained
after training during SBS-only stimulation: the learning
reflected adaptive changes in the functional connectivity of
the neuronal network. Results from the experiment depicted
in figure 2 are shown in figure 5(a). The distribution of the
10 min SBS-only period immediately before (Pre) closed-
loop training was significantly different from that immediately
after (Post) closed-loop training (histograms on the right
side of figure 5(a). Furthermore, this electrical training-
induced plasticity led to desired motor outputs in 18 out of
23 trials (78.3%) (see figure 3), demonstrating that closed-
loop training could successfully direct network plasticity
(figure 5(a) histograms and figure 5(c)). Moreover, the
distributions were not significantly different between the last
10 min of the training and the next 10 min of the SBS-only
control (figure 5(d)), which indicates that the new distribution
of motor outputs was preserved in the SBS-only period after
PTS training was turned off. This also further demonstrated
that the improved performance was due to network plasticity,
not an elastic response to a particular PTS history or to non-
biological causes.

In order to investigate the duration of training-induced
plasticity, the mean distance (Dposi_pre) 0f CAs in consecutive
10 min periods after training (moved with 1 min time steps)
(see Post, at the top of figure 5(a)) to the centroid of CAs in a
10 min reference period immediately before training (Pre), was
calculated and compared to the mean distance (Dpre_pre) of CAs
in Pre to their own centroid. The ratio of Dpyg_pre t0 Dpre_pre
was used to quantify the change in CAs from a Pre period
to different Post periods (a ratio of 1 indicates no change)
(Chao et al 2007). The mean and SEM of Dpygs_pre/Dpre_pre
across closed-loop and open-loop periods (n = 23 trials)
was compared to that across equivalent periods of SBS-
only stimulation conducted before training (n = 12 closed-
loop and open-loop experiments, see Methods) (figure 6(a)).
Dpost_pre/ Dpre_pre across closed-loop periods for each trial is
shown in figure 6(b). Closed-loop training-induced plasticity
was significantly greater than baseline plasticity, or drift,
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Figure 5. Long-term plasticity of the movement direction. (a) Movement directions became concentrated within £30° of the desired
direction (red numbers and horizontal lines) during closed-loop training (CL) and persisted into the SBS-only periods. Data are from the
same representative experiment as in figure 2. The distribution of movement angles was sampled every 10 min from 1 h before to 2 h after
the closed-loop experiment (gray scale). The distributions of the occurrence of different movement angles during 10 min SBS-only periods
immediately before (Pre) and immediately after (Post) closed-loop training are shown in the histograms (right). (b) Changes in the
movement direction were seldom observed in the corresponding open-loop experiment (OL). (c) The distribution of movement angles in Pre
periods was significantly different from that in Post periods for closed-loop training, suggesting directional plasticity occurred. It was not
significant for replayed open-loop stimulation suggesting adaptive plasticity was not a stimulation artifact. The P-values of the difference in
movement angle distributions for each of the 23 desired directions (two-sample Kolmogorov—Smirnov test, two tailed) are represented in
box plots. Box edges indicate the first (lower) quartile and third (upper) quartiles, and the thicker line indicates the median. Outliers are
indicated as black dots, and the largest and smallest non-outlier observations are indicated as tic marks (whiskers). The median p-value for
closed-loop experiments (0.017) was below a significance level of 0.05. (d) The distribution of movement angles between the last 10 min in
closed-loop (or open-loop trials; CL, OL) and that during the next 10 min of SBS-only (Post) were not significantly different, demonstrating

that the directed plasticity was not an artifact of PTS history.

measured before training (black triangles in figure 6(a)) for
80 min (Wilcoxon rank sum test, « = 0.01) (figure 6(c)).
Replayed open-loop stimulation did not induce significant
directed plasticity. That Dpog_pre/Dpre_pre Was not significant
80 min after the end of closed-loop training indicates that
CAs tended on average to relax back toward their previous
distribution before training. This relaxation could be due to
an active ‘re-habituation’ to the SBS-only stimulation. SBS,
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while less structured than PTS, still has a spatio-temporal
structure and an ability to induce plasticity.

Interestingly, despite having an identical stimulation
sequence, the PTSs in open-loop training did not cause
desired behavior nor even noticeable plasticity. For replayed
open-loop stimuli, the distribution of movements was less
focused (figure 5(b); also see figure 2(b)), and no significant
changes in motor output (figure 5(c)) or neuronal activity
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Figure 6. Plasticity of neuronal activity induced by closed-loop training lasted on average for 80 min: plasticity induced by closed-loop
training was significantly greater than intrinsic plasticity before training, for 80 min on average for all experiments, but not for replayed
open-loop stimulation. (a) Dpog_pre/ Dpre_pre (se€ the definition in Results) was calculated between CAs in consecutive 10 min periods after
training (Post, see figure 5) stepped by 1 min and CAs in a 10 min reference period immediately before training (Pre). The mean and SEM
Of Dposi_pre/ Dpre—pre across closed-loop and open-loop periods (n = 23 trials) was compared to Dpogi_pre/ Dpre_pre aCross SBS-only periods
during the first 6 h of SBS-only stimulation. (Before training, n = 12 closed-loop and open-loop experiments.) (b) Dposi_pre/ Dpre_pre ACTOSS
closed-loop periods for each trial. In each subplot, Dpog_pre/ Dpre_pre Of €ach 10min period is indicated as a gray dot, and the overall trend is
shown by a smoothed time course (moving average with a 30-point span) of Dpog_pre/ Dpre_pre (green curve). (c) Closed-loop training-induced
plasticity was significantly greater than the baseline plasticity measured before training (black triangles in (a)) for 80 min. Adaptive
plasticity in closed-loop experiments was significantly greater than intrinsic plasticity (drift) for 80 min (Wilcoxon rank sum test, @ = 0.01).

(figure 6) occurred for most of the experiments. Desired
movement directions were found in four out of 23 open-
loop trials (17.4%) during the last 10 min (see —45° trial
in figure 2(b)), which was close to the 16.67% chance but
significantly lower than the 78.3% success rate for closed-loop
experiments. When contingent on neuronal activity, the set of
PTSs was able to incrementally shift network dynamics until
a significant adaptive functional change was easily detectable
and persistent.

Training required different PTSs at different times

A neuronal network is continuously plastic, being modified
by both stimulus-evoked and spontaneous activity. The same
PTS may therefore have different effects at different points
in time, and successful adaptation to a desired motor output
would require application of PTSs in a certain sequence. This
was observed, as shown in figures 3 and 7(b). A given PTS

could induce appropriate plasticity initially, but continued
application of the PTS could be maladaptive.

We also found that fewer PTSs were needed across
a training period to maintain a successful motor output
(figure 7(c)). The trend of the PTS-delivering frequency across
all 23 trials was measured by counting successful PTSs in a
10-min moving time bin with 1-min time step and normalizing
by its maximum value for that trial. We defined a successful
PTS as one that improved the performance at least one time,
and found that on average, the occurrence of successful PTSs
decreased over the last hour (Spearman correlation of means,
one-tailed, rho —0.89, p-value <1 x 1075, n = 231
successful PTSs in 23 trials). This suggests that the training
stimuli that were successful in the first hour were less often or
no longer required during the last hour to maintain an increased
rate of correct motor outputs (see average closed-loop learning
curve in figure 4).
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Figure 7. Training required different PTSs at different times.

(a) A normalized version of the learning curve shown in figure 2(c).

(b) PTSs delivered for different desired directions are shown as
black pluses. The corresponding probability in time is shown in
figure 3 (031007_B). Various different PTSs were needed to induce
appropriate neuronal plasticity and successful motor output.
Electrode locations and order (right) for the PTSs (indicated by red
arrows) are shown in 8 x 8 grids of electrode locations. (c) Across
the 23 trials, fewer PTSs were needed in time to maintain a
successful motor output. The frequency of occurrence of a
successful PTS was measured by a 10 min moving time bin with

1 min time step and normalized by its maximum value (set to 1).

A successful PTS was defined as one that improved performance at
least one time. The initial rise occurred while appropriate PTSs
were searched. PTS occurrence decreased over the last hour
(Spearman correlation of means (dots), one-tailed, tho = —0.89,
p-value < 1 x 107>, n = 231 successful PTSs in 23 trials), which
indicates that the training stimuli that were successful in the first
hour were less often or no longer required during the last hour to
maintain an increased rate of correct motor outputs. A cubic
polynomial (red) was fit to the data to better visualize the trend.
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Although the PTS selection algorithm increased the
probability of occurrence of a PTS based on the success of
short-term ‘elastic’ responses after the next probe stimuli, the
elastic responses became consolidated as long-term adaptive
changes in time. This is demonstrated by the stability of
the distribution of movement directions into the SBS-only
period following training (figure 5(d)), the learning curves
(figure 4), maintenance of the plasticity of neuronal activity
(figure 6) and progressively fewer PTSs being needed to
maintain desired movement (figure 7(c)). At the start of
training, the changes in the probe responses were indeed
initially short-term elastic responses because they were not
maintained, requiring reapplication of PTSs. The adaptation
of the living networks’ responses to the probe pulse should
not be confused with the adaptation, in the computer, of the
probabilities of PTS selection to behavior. Recall that the
CPS was kept constant throughout an experiment such that
changes in the network’s responses to it were, by definition, via
alterations in functional connectivity of the cortical network.

Discussion

This is to our knowledge the first successful demonstration,
in vivo or in vitro, of goal-directed learning from patterned
multi-electrode training stimulation. Our adaptive training
algorithm builds upon previous static training protocols
(DeMarse et al 2001, Bakkum et al 2004, Marom and Shahaf
2002, Ruaro et al 2005, Novellino et al 2007) by demonstrating
that the same network can be re-trained to produce different
behaviors. For reviews on the use of MEAs to study learning
with electrical stimulation, see Morin et al (2005), Arsiero
et al (2007). We hypothesize that directing plasticity using
electrical stimuli contingent on the motor output is more
efficient than blindly forcing plasticity, for example, via a
large tetanic stimulation (Madhavan et al 2007, Jimbo et al
1999). Since neuronal activity is continuously plastic, each
electrical stimulus and the ongoing spontaneous activity
alter the network’s functional landscape, and routes toward
successful behavior cannot be plotted in advance: learning is
an ongoing and continuous process. Our closed-loop electrical
training algorithm allowed the probabilities of the PTS pool
to change, and ‘solutions’ to achieve desired motor outputs
were explored by the hybrid (neural + computer) system in
real time.

Improvement of stimulation protocols from
the previous modeling study

In a preliminary study aimed at devising a successful training
algorithm, we used a biologically inspired simulated network
with simulated electrical stimuli as a test bed to quickly explore
the effectiveness of various types of training algorithms. We
successfully demonstrated that the network could be shaped to
learn a goal animat behavior involving multiple sensory inputs
and motor outputs, using a precursor of the current technique
(Chao et al 2008). The stimuli (CPSs) used to encode different
sensory inputs evoked neural responses used as motor outputs,
and successful learning could be achieved only when these
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responses had little overlap. To begin testing whether living
cultured networks could also exhibit goal-directed learning, we
avoided overlapped responses by applying just one sensory
input. That is, we delivered one CPS pattern to investigate
whether the network could learn to control movement of an
animat in a single pre-defined desired direction. Future studies
will employ increasingly complex sensory inputs and tasks.

Even though many details of cellular biology and
electrode physics were absent from the model network, the
closed-loop training that proved successful for the animat
controlled by a simulated network required only minor changes
for the present study on living cortical networks. This
suggests that the adaptive changes reported here were due
to spike-timing dependent plasticity (STDP), which was the
only long-term plasticity mechanism used in our simulated
network (chao et al 2008). In the modeling study, random
background stimulation (RBS), instead of SBS, was delivered
when training was not required. RBS was delivered randomly
at 60 electrodes, one at a time, with random inter-pulse
intervals ranging from 200 to 400 ms. This stimulation
was shown in a leaky integrate-and-fire model network to
negate attractors in network synaptic weight distributions
caused by spontaneous activity and also was shown to prevent
network synaptic weights from drifting to such attractors
after inducing plasticity with simulated electrical stimulation
(Chao et al 2005). In the simulated neural network, this
property allowed training-induced changes in the network
activity to be stabilized (Chao et al 2008). Also, PTSs
comprised of pairs of stimuli, instead of a sequence of six
stimuli, were used for training. In preliminary experiments
with living cultures, we found that CPS responses after
two-electrode PTS were greater in number than those after
a RBS distributed over all available electrodes (p-value <
1 x 107%, n = 200 CPS responses after randomly-selected
PTS and 200 CPS responses after randomly-selected RBS
for three preliminary experiments, Wilcoxon rank sum test).
We hypothesized that in order to keep the magnitude of the
probe response consistent, the spatio-temporal distribution of
training stimuli should also be consistent for different types of
stimulation. Therefore, we increased the number of electrodes
used in PTS and decreased the number used in RBS to an
equal total of 6, and CPS responses after PTS and those
after SBS became comparable (p-value = 0.62, n = 200 CPS
responses after randomly-selected PTS and 200 CPS responses
after randomly-selected RBS for 23 open-loop experiments,
Wilcoxon rank sum test). By shuffling the PTS to produce
SBS, we ensured that the total amount of stimulation delivered
by either type of stimulation was equal, so any observed
learning was a consequence of the subtle timing, not overall
quantity, of inputs to the network. No longer random, RBS
was renamed SBS. While the adaptive training using the new
PTS/SBS implementation induced and maintained plasticity
and successful movements, the SBS implementation may not
be optimal considering its decreased randomness might slowly
induce plasticity (interpreted as forgetting) more readily than
would an all-electrode random background stimulation (see
figure 6).

Potential treatment of neurological disorders

For neurological disorders, targeted distributed artificial
stimulation of the brain contingent on the activity of the body
or even of the brain itself could direct neuronal plasticity to
bypass or accommodate aberrant neuronal activity. Initial
candidate pathologies include those with (1) a focal neuronal
source or related pathway at which to insert an MEA for
electrical training and (2) a measurable physical manifestation
from which to gather feedback on performance. As an
example, to treat movement disorders such as those that occur
after a stroke, electrical modification of motor areas could
be guided by physical measurements of changes in muscle
activity using electromyography. Directly measuring motor
output negates the need for context and probe stimuli to sample
neuronal activity, allowing training to be a continuous process.
Ongoing afferent input to the artificially stimulated neurons
from different brain areas would be expected to eliminate the
need for SBS. Relinking the body and the brain with closed-
loop stimulation systems could give existing brain mechanisms
the potential to overcome neurological disorders.

Current therapeutic techniques used to treat neurological
movement disorders attempt to relink neuronal activity to
a goal movement via the use of directed mental attention
or perceptible feedback signals of behavior, and a lot of
practice.  Physical therapy, including treadmill training
and robotic-assisted or neuromuscular/functional electrical
stimulation (NMES /FES)-induced limb movement, has been
used to combine natural motion with proprioceptive feedback
(Dobkin 2004, Sheffler and Chae 2007). This feedback
reactivates existing motor circuits, eventually improving
the control of paretic limbs. Further incorporating visual
and aural cues, such as targets for foot steps or beats to
maintain walking gaits, and also mental imagery of movement
have been used to improve training by also priming motor
circuits but in a top—down (cortical origin) manner (Morris
2000). Biofeedback therapy uses visual, aural, or tactile
displays to improve performance by making underlying
physiological or cognitive processes perceptible (Huang
et al 2006). These examples all relink neuronal activity to
amovement. Moreover, physical therapies have led to cortical
plasticity. For example, improvement in hand movements,
after constraint-induced movement therapy, was accompanied
by an increased representational area in the motor cortex,
observed by transcranial magnetic stimulation (Liepert et al
2000) and fMRI (Johansen-Berg er al 2002). However,
while helpful, there are at least three shortcomings of these
techniques. (1) Benefits are not guaranteed across individuals
or different etiologies; (2) optimal therapeutic protocols have
not been established; and (3) the relationship with neuronal
plasticity is only indirectly inferred (Dobkin 2004, Huang
et al 2006). Adaptive closed-loop distributed stimulation may
improve therapeutic results by directly treating the abnormal
neuronal circuits and related pathways themselves.

Electrical stimulation inside the brain has successfully
managed pathological symptoms, but without relinking
neuronal activity and behavior (more of a treatment rather than
rehabilitation). Deep brain stimulation (DBS) has been used to
treat severe cases of essential tremor, dystonia, and Parkinson’s
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disease (Kern and Kumar 2007), Tourette syndrome (Visser-
Vandewalle 2007), clinical depression (Mayberg et al 2005),
and epilepsy (Perlmutter and Mink 2006). However, its
functional mechanisms are debated, and whether or not
plasticity plays a key role in DBS therapy is unclear because
the effects depend on continual stimulation. This can cause
serious side effects including paresthesias, and attentional and
learning impairments (Jahanshahi ef al 2000). Other electrical
methods to reduce epileptic seizures have been used, including
repetitive vagus nerve stimulation (Schachter and Saper 1998)
or electrical pulses at or near seizure foci applied prior to
a predicted seizure onset (Martinerie et al 1998), but their
consequences on neuronal plasticity are not known either.
Therefore, designing an adaptive closed-loop algorithm to
select appropriate training stimuli, contingent on neuronal
or muscular output, could optimize the effect of a treatment
while also avoiding extraneous side effects from excessive
stimulation.

Possible improvements

The average closed-loop learning curve (figure 4) showed
clear improvements in performance, but some trials showed
no learning (figure 3). More optimal training algorithms likely
exist, although successful performance may have continued to
improve or become more permanent if training was not stopped
after 2 h. Using a larger set of possible PTSs could improve
success rates by inducing a greater range of plasticity; the
tradeoff is a potentially longer duration of training to find an
appropriate sequence of PTSs. Different spatio-temporally
structured PTSs, e.g. using more or fewer stimulation
electrodes and different temporal arrangements, could also
produce different performance.  Furthermore, the 0.50
maximum criterion on the probability of selecting a PTS allows
randomly applied inappropriate PTS to produce setbacks, and
the 0.002 minimum may keep unhelpful PTSs in the pool.
Different optimization rules, such as evolving the PTS pool
with a genetic algorithm, or introducing a PID controller to
govern the duration of training could potentially improve
performance. Future work includes further characterizing
the abilities and limitations of distributed artificial stimuli
to induce neuronal plasticity, optimizing training parameters
and applying closed-loop algorithms to achieve multiple
simultaneous desired motor outputs.
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